
LangChain 기반의 RAG 구축 사례

2025.10.14발표일자

정일구발 표 자



RAG (Retrieval-Augmented Generation) - 검색, 증강, 생성

■ AS-IS

현재의 ChatGPT가 가질 수 있는 문제점

1. 최신 정보에 대하여 학습되어 있지 않다

2. 개인or회사에 제한되어 있는 내부데이터에 대한 학습이 되어 있지 않다.

3. 특정도메인에 대한 질문을 하면 기대하는 답변을 얻을 수 없다.

4. 할루시네이션(환각) 현상이 발생한다. 게다가 문서의 양이 많아지면 더욱 심해진다.

■ TO-BE

적합한 RAG를 적용했을 때는

1. 최신 정보를 기반으로 답변할 수 있으며, 정보를 찾을 수 없는 경우 검색기능을 활용하여 답변할 수 있다.

2. 개인or회사에 제한되어 있는 내부데이터를 참고하여 답변할 수 있다.

3. 문서를 내부 DB에 저장할 수 있고, DB에 내용을 축적할 수 있으며, 저장된 DB에서 원하는 정보를 검색하여 답변할 수 있다.

4. 답변에 대한 출처를 역으로 저장되어 있는 DB에서 검색 후 검증하는 방식으로 할루시네이션 현상을 줄일 수 있다.



RAG (Retrieval-Augmented Generation) - 검색, 증강, 생성

여기서는 LangChain에 대해 알아볼 예정

현재 사내 AI 에이전트인 NO-CODE 기반의 Dify가 있음 →



LangChain

■ 개요

언어 모델을 활용해 다양한 애플리케이션을 개발할 수 있는 프레임워크

LangChain을 통해 언어 모델은 다음과 같은 기능을 수행할 수 있게 됩니다.

1) 문맥을 인식하는 기능
- 다양한 문맥 소스와 연결함.
- 프롬프트 지시사항, 소수의 예시, 응답에 근거한 내용 등이 포함됨.
- 이를 통해 제공된 정보를 기반으로 더 정확하고 관련성 높은 답변을 생성 가능.

2) 추론하는 기능
- 주어진 문맥을 바탕으로 어떠한 답변을 제공하거나, 어떤 조치를 취해야 할지를 스스로 추론할 수 있음.
- 단순히 정보를 재생산하는 것을 넘어서, 주어진 상황을 분석하고 적절한 해결책을 제시할 수 있음을 의미.

LangChain 을 활용하면 이전에 언급한 기능을 바탕으로 검색 증강 생성(RAG) 어플리케이션 제작, 구조화된 데이터 분석, 챗봇 등을 만들
수 있습니다.



LangChain 설치 환경

■ 로컬 리소스 (가정용 셋팅)

Chatreey AN3 (미니PC)
- CPU : AMD Ryzen 7 7840
- RAM : 2xDDR5 So-dimm 4800MHz
- Storage : M.2 NVMe 2280 Slot
- USB4 포트
- WOL (Wake On LAN)
- LangChain 환경 설정

AOSTAR AG02
- eGPU Dock
- 최대 64Gbps의 대역폭 제공
- USB4 포트

GTX1080
- VRAM : 8GB GDDR5X
- GPU 연산 작업

Synology NAS DS120j
- CPU : Marvell Armada 3700 88F3720 듀얼코어 800MHz (64비트)
- RAM : 512MB DDR3L
- 도메인 연결 및 역방향 프록시 설정 등
- 간단한 웹서비스 제공 (PHP, NodeJS, DB 등)



LangChain 설치 환경

구축 예시

※ 첨부된 이미지들은 전부 로컬 AI로 생성되어, 일부 오타가 있을 수 있음.

일반 웹서버
(미니PC or NAS)

RAG 웹서버
(미니PC, IP+Ports)

RAG 웹서버 (Domain)
(미니PC, RAG)
(역방향 프록시)



LangChain 동작 환경 (CPU, GPU)

nvidia-smi
현재 langchain 환경에서 gpu를 사용할 수 있는지를 체크.
(실행 결과가 없거나 표시되지 않으면 cpu로만 수행하게 됨)

CPU/GPU 수행 차이
임베딩 / 벡터DB / LLM 추론 단계에서
GPU가 CPU보다 수십~수백배 가량 빠르게 처리함.



LangChain 설치 과정 (step 1/2)

■ 미니PC 내 설정 (Win11)

D드라이브 (예시 경로 D:\langchain_rag\)를 기준으로 함.

▼ 명령 프롬프트에서 실행

> d:

> mkdir langchain_rag

> cd langchain_rag

> python -m venv langchain_venv

> .\langchain_venv\Scripts\activate



LangChain 설치 과정 (step 2/2)

■ langchain 패키지 설치

▼ 명령 프롬프트의 venv 환경에서 실행

> python.exe -m pip install --upgrade pip
> pip install python-dotenv pypdf html2text pymysql
> pip install Flask fastapi unicorn
> pip install langchain langchain-community langchain-ollama
> pip install "langchain[cli]"
> pip install langchain-huggingface sentence-transformers
> pip install -U langchain-ollama
> pip install qdrant-client
> pip install torch qdrant-client
> pip install -U langchain-qdrant

(필요 시 추가 설치 진행)

▼ requirements.txt 같은 형태로 일괄 설치도 가능함. (예시)
> pip install -r https://gpt.fearat.kr/assets/langchain/requirements.txt
> pip install -r https://gpt.fearat.kr/assets/langchain/requirements-mini.txt (경량화 버전)



LLM 설치 과정 (ollama)

■ ollama 설치

ollama 어플리케이션 다운로드

https://www.ollama.com/download
(여기서는 windows 버전으로 다운로드)

ollama 어플리케이션 설치

ollama에서 사용할 LLM(llama3) 다운로드 및 실행

> ollama run llama3
(model이 없으면 다운로드를 진행함.)

※ 시스템 환경변수 설정을 통해 C가 아닌 D드라이브에 설치도 가능.
(이후 예제에서는 D드라이브를 기준)



LangChain 예제1 (1/2)

■ 내부 데이터를 기준으로 답변하는 예시

단일 스크립트 내에서 질문 → 가상의 문서 데이터 → 벡터 스토어 생성 → RAG 체인수행 → 답변 하는 과정



LangChain 예제1 (2/2)

■ 내부 데이터를 기준으로 답변하는 예시

▼ 명령 프롬프트의 venv 환경에서 실행

(venv) > python rag_test.py

※ 임베딩 시 사용하는 GPU, LLM에 따라 벡터의 품질이 결정되고, 이는 최종 답변의 정확도 및 속도에 영향을 줌.
(GTX1080 기준 15초 가량 소요)

<실행 예시 : 랜덤 질문 1개에 대해 답변 중>



LangChain 예제2 (1/2)

■ DB에서 조회한 데이터를 기준으로 답변하는 예시

단일 스크립트 내에서 질문 → DB에서 조회된 문서 데이터 → 벡터 스토어 생성 → RAG 체인수행 → 답변 하는 과정



LangChain 예제2 (2/2)

■ DB에서 조회한 데이터를 기준으로 답변하는 예시

▼ 명령 프롬프트의 venv 환경에서 실행

(venv) > python rag_db.py

※ 임베딩 시 사용하는 LLM에 따라 다중 row를 제대로 답변하지 못하기도 함.

<실행 예시 : DB에서 조회된 내용으로 답변 중>



LangChain 예제3 (1/2)

■ 외부 파일을 조회하여 답변하기

단일 스크립트 내에서 질문 → 특정 경로의 파일 조회 → RAG 체인수행 → 답변 하는 과정



LangChain 예제3 (2/2)

■ 외부 파일을 조회하여 답변하기

▼ 명령 프롬프트의 venv 환경에서 실행

(venv) > python rag_by_files.py

<실행 예시 : 특정 경로의 파일로부터 질문에 대해 답변>



LangChain 예제4 (1/3)

■ 벡터DB 생성 후, 벡터DB에서 조회하여 답변하기

documents의 내용을 DB에서 조회하여, Embedding 과정 후 Vector Store로 파일 저장

단일 스크립트 내에서 질문 → 저장된 Vector Store 파일 → RAG 체인수행 → 답변 하는 과정

<Vector DB와 기존 DB 구문의 비교>

<Vector DB에 활용하기 좋은 예시 : Firecrawl>



LangChain 예제4 (2/3)

■ 벡터DB 생성 후, 벡터DB에서 조회하여 답변하기

▼ 명령 프롬프트의 venv 환경에서 실행

(venv) > python create_vector_store.py
(venv) > python rag_faiss.py

※ 벡터DB 생성 시, 5000 rows 기준 속도
- gpu : 4시간 가량 소요
- cpu : 1개월 이상 소요.



LangChain 예제4 (3/3)

■ 벡터DB 생성 후, 벡터DB에서 조회하여 답변하기

▼ 명령 프롬프트의 venv 환경에서 실행

(venv) > python create_vector_store.py
(venv) > python rag_faiss.py

※ 답변 정확도는 DB 때와 마찬가지로 떨어지는 편

<실행 예시 : 생성한 벡터DB로 답변 중 (실패)>



LangChain 예제5

■ 성능 개선을 위해 HuggingFace로 벡터DB 생성 후, 답변하기

▼ 예제 3의 create_vector_store.py과 대부분 동일. 

※ 일반 윈도우 환경에서는 faiss-gpu를 사용할 수 없어 WSL2를 설치 후 적용
※ faiss-gpu를 제대로 사용하려면 Docker 환경에서 진행해야 함.
※ Docker에서 진행 시 GTX1080은 sm_61를 쓰고 있어 PyTorch 2.x와 호환 불가

(sm_61에 맞게 버전을 강제 다운그레이드해도 불가)

☞ 현재 로컬 리소스(GTX1080)에서는 진행 불가. (GPU 업그레이드 필요...?)

<create_vector_store_hf.py (중략)><create_vector_store.py (중략)>



LangChain 예제6 (1/2)

■ Qdrant로 답변얻기

▼ Ollama 외에 Qdrant 서버 추가 실행

<비고 : 예제1의 Ollama+FAISS 방식>

<qdrant 서버 실행 예시>



LangChain 예제6 (2/2)

■ Qdrant로 답변얻기

▼ 명령 프롬프트의 venv 환경에서 실행

(venv) > python rag_qdrant.py

※ 속도는 Ollama와 비슷하거나 약간 더 빠름.

<ollama + qdrant + rag_qdrant.py 실행 예시>



LangChain 예제7 (1/3)

■ Qdrant로 벡터DB 생성 후, 조회하여 답변하기

documents의 내용을 DB에서 조회하여, Embedding 과정 후 Vector Store로 파일 저장

단일 스크립트 내에서 질문 → 저장된 Vector Store 파일 → RAG 체인수행 → 답변 하는 과정



LangChain 예제7 (2/3)

■ Qdrant로 벡터DB 생성 후, 조회하여 답변하기

▼ 명령 프롬프트의 venv 환경에서 실행

(venv) > python create_vector_store_mxbai.py
(venv) > python rag_qdrant_vector.py

※ Vector DB는 다른 경로에 생성됨.

<create_vector_store.py (중략)> <create_vector_store_mxbai.py (중략)>



LangChain 예제7 (3/3)

■ Qdrant로 벡터DB 생성 후, 조회하여 답변하기

▼ 명령 프롬프트의 venv 환경에서 실행

(venv) > python create_vector_store_mxbai.py
(venv) > python rag_qdrant_vector.py

※ 임베딩 시 사용하는 LLM에 따라 다중 row를 제대로 답변하지 못하기도 함.
※ 최신 정보와 오래된 정보를 제대로 구분하지 못하는 경우도 발생.

<실행 예시 : 프롬프트 규칙에 따라 한글로 답변 중>



LangChain 예제8

■ Openai LLM 사용하기

gpt-4o, gpt-3.5-turbo 등의 LLM 사용 가능

클라우드 기반의 외부 LLM을 사용하므로, GPU의 중요성이 낮아짐

<실행 예시 : openai의 LLM 연결 (429 error)>



LangChain 후기

■ 로컬 환경
GTX 1080 (sm_61) 으로 실행하기에는 약간 무리. (GPU 문제는 WSL2, Docker로도 해결 안됨)
Vector Store 및 LLM에 따라 답변 퀄리티가 크게 변함.
Win11 환경에서의 설치 및 의존성 문제를 해결해야 함. (PyTorch, CUDA 버전 등)

■ 클라우드 환경
답변 정확도는 높음. 대신 비용이 발생.
토큰 수의 영향을 많이 받음

< faiss-gpu 사용을 위해 torch 버전을 낮추려는 시도. (결국 실패) >



마무리

<D2R Runeword 2.4>
불굴의 의지

Unbending Will

- 캐릭터 직업/활용 여부에 따라서는 졸업템으로 사용할 수 있음
- 무기 베이스(재료)가 되는 무기가 중요
- 활용이 자유로움 (직접 착용 or 용병이 착용)
- Fal Io Ith Eld El Hel을 순서대로 정확하게 조합해야 제작됨.
- 제작 시 변동 옵션이 커서, 원하는 옵션을 얻기 이해 여러번 제작해야 함.
- 아이템을 얻기 위한 의지 (시간, 반복 투자)

LangChain

- 잘 만들어두면 코어 프레임워크로서 사용할 수 있음
- 하드웨어(CPU, GPU)가 매우 중요
- 활용이 자유로움 (NoCode 방식보다 더 정교하고 맞춤화된 솔루션)
- Loader, Splitter, Embeddings, Retriever, LLM 등이 정확하게 연결되어야 동작.
- 응답 품질을 위해 Chunk Size, LLM, 프롬프트 등을 계속 테스트해야 함.
- 지식과 기술을 얻으려는 의지 (코딩 능력, 구매 비용 등)



<FastCampus 강의 예시>
https://fastcampus.co.kr/data_online_teddy

LangChain 참고 (1/2)



LangChain 참고 (2/2)


